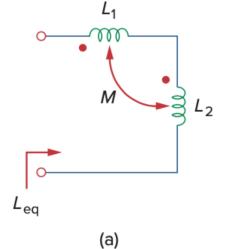
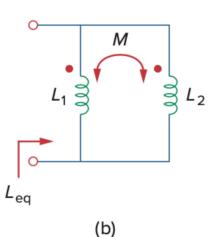

For the three coupled coils in Fig. 13.72, calculate the total inductance.

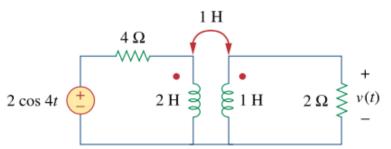

1.


13.4 (a) For the coupled coils in Fig. 13.74(a), show that

$$L_{\rm eq} = L_1 + L_2 + 2M$$

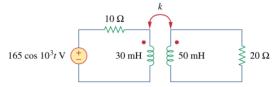
(b) For the coupled coils in Fig. 13.74(b), show that

$$L_{\rm eq} = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M}$$

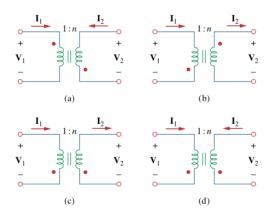


2.

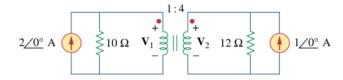
Chapter 13, Problem 8.



ML Find v(t) for the circuit in Fig. 13.77.



3.


In the circuit of Fig. 13.98, find the value of the coupling coefficient k that will make the $10-\Omega$ resistor dissipate 320 W. For this value of k, find the energy stored in the coupled coils at t = 1.5 s.

As done in Fig. 13.32, obtain the relationships between terminal voltages and currents for each of the ideal transformers in Fig. 13.105.

ps \mathbf{ML} Obtain \mathbf{V}_1 and \mathbf{V}_2 in the ideal transformer circuit of Fig. 13.108.

6.

5.

4.