

The polarity or level indicator is a "triangle" () that indicates inversion when it appears on the input or output of a logic element, as shown in Figure 3–1(b). When appear- ing on the input, it means that a LOW level is the active or asserted input state. When appearing on the output, it means that a LOW level is the active or asserted output state.

For an AND gate, all HIGH inputs produce a HIGH output.

TABLE 3-2

Truth table for a 2-input AND gate.

Inputs		Output		
A B		X		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

1 = HIGH, 0 = LOW

ΤΑΙ	3LE 3-	-3	
	Inputs		Output
A	B	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

EXAMPLE 3-4

For the two input waveforms, A and B, in Figure 3–12, show the output waveform with its proper relation to the inputs.

FIGURE 3–15 Boolean expressions for AND gates with two, three, and four inputs.

FIGURE 3–18 Standard logic symbols for the OR gate showing two inputs (ANSI/IEEE Std. 91-1984/Std. 91a-1991).

FIGURE 3–20 Example of OR gate operation with a timing diagram showing input and output time relationships.

EXAMPLE 3-9

For the 3-input OR gate in Figure 3–23, determine the output waveform in proper time relation to the inputs.

FIGURE 3–24 Boolean expressions for OR gates with two, three, and four inputs.

The NAND Gate

(a) Distinctive shape, 2-input NAND gate and its NOT/AND equivalent

(b) Rectangular outline, 2-input NAND gate with polarity indicator

X

FIGURE 3–26 Standard NAND gate logic symbols (ANSI/IEEE Std. 91-1984/Std. 91a-1991).

Truth table for a 2-input NAND gate.

Inp	outs	Output				
A	B		X			
0	0	0	1			
0	1	D	1			
1	0	Ø	1			
1	1		0			
1 = HIGH, 0 = LOW.						

EXAMPLE 3-11

Show the output waveform for the 3-input NAND gate in Figure 3–29 with its proper time relationship to the inputs.

The NOR Gate

EXAMPLE 3-16

Show the output waveform for the 3-input NOR gate in Figure 3–37 with the proper time relation to the inputs.

FIGURE 3–49 Concept of a programmable AND array.

FIGURE 3–53 A simple AND array with EPROM technology. Only one gate in the array is shown for simplicity.

Flash Technology

Flash technology is based on a single transistor link and is both nonvolatile and reprogram- mable. Flash elements are a type of EEPROM but are faster and result in higher density devices than the standard EEPROM link. A detailed discussion of the flash memory element can be found in Chapter 11.

SRAM Technology Participation (July 1) (July 1)

TABLE 3-14

74 series logic families based on circuit technology.

Circuit Type	Description	Circuit Technology		
ABT	Advanced BiCMOS	BiCMOS		
AC	Advanced CMOS	CMOS		
ACT	Bipolar compatible AC	CMOS		
AHC	Advanced high-speed CMOS	CMOS		
AHCT	Bipolar compatible AHC	CMOS		
ALB	Advanced low-voltage BiCMOS	BiCMOS		
ALS	Advanced low-power Schottky	Bipolar		
ALVC	Advanced low-voltage CMOS	CMOS		
AUC	Advanced ultra-low-voltage CMOS	CMOS		
AUP	Advanced ultra-low-power CMOS	CMOS		
AS	Advanced Schottky	Bipolar		
AVC	Advanced very-low-power CMOS	CMOS		
BCT	Standard BiCMOS	BiCMOS		
F	Fast	Bipolar		
FCT	Fast CMOS technology	CMOS		
HC	High-speed CMOS	CMOS		
HCT	Bipolar compatible HC	CMOS		
LS	Low-power Schottky	Bipolar		
LV-A	Low-voltage CMOS	CMOS		
LV-AT	Bipolar compatible LV-A	CMOS		
LVC	Low-voltage CMOS	CMOS		
LVT	Low-voltage biCMOS	BiCMOS		
s	Schottky	Bipolar		

Propagation Delay Time

EXAMPLE 3-23

Show the propagation delay times of an inverter.

Solution

An input/output pulse of an inverter is shown in Figure 3–67, and the propagation delay times t_{PHL} and t_{PLH} , are indicated. In this case, the delays are measured between the 50% points of the corresponding edges of the input and output pulses. The values of t_{PHL} and t_{PLH} are not necessarily equal but in many cases they are the same.

Quad 2-Input NAND Gate High-Performance Silicon-Gate CMOS

The MC54/74HC00A is identical in pinout to the LS00. The device inputs are compatible with Standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

- Output Drive Capability. (U) OTTL Loads
 Output Drive Capability. (U) OTTL Loads
 Outputs Directly Interface to CMOS, NMOS and TTL
 Operating Voltage Range: 2 to 6 V
 High Noise Immunity Characteristic of CMOS Devices
 In Compliance With the JEDEC Standard No. 7A Beautiements
- Requirements

 Chip Complexity: 32 FETs or 8 Equivalent Gates
 - LOGIC DIAGRAM A1 _1 3 Y1 B1 _____ A2 $\frac{4}{2}$ 6 Y2 5 B2 $Y = \overline{AB}$ A3 _9 8 Y3 вз 10 A4 12 <u>11</u> Y4 B4 13 PIN $14 = V_{cc}$ PIN 7 = GND

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
Vin	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
Vout	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
Iin	DC Input Current, per Pin	± 20	mA
Iout	DC Output Current, per Pin	± 25	mA
ICC	DC Supply Current, V _{CC} and GND Pins	± 50	mA
PD	Power Dissipation in Still Air, Plastic or Ceramic DIP+	750	mW
	SOIC Package ⁺	500	
	TSSOP Package+	450	
T _{stg}	Storage Temperature	-65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds		°C
-	Plastic DIP, SOIC or TSSOP Package	260	
	Ceramic DIP	300	

Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.
 Plastic DIP: – 10 mW/°C from 65° to 125° C Ceramic DIP: – 10 mW/°C from 65° to 125° C SOIC Package: – 7 mW/°C from 65° to 125° C TSSOP Package: – 6.1 mW/°C from 65° to 125° C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	in	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
Vin, Vout	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
TA	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time V _{CC} = 2.0 V	0	1000	ns
	V _{CC} = 4.5 V	0	500	
	V _{CC} = 6.0 V	0	400	

				V.	Guaranteed Limit			
Symbol	Parameter	Condition		v cc	-55 to 25°C	<85°C	<125°C	Uni
Vni	Minimum High-Level Input Voltage	$V_{out} = 0.1 V \text{ or } V_{cc} = 0.1$	V	2.0	1.50	1.50	1.50	V
·m		$ I_{out} \le 20 \mu A$		3.0	2.10	2.10	2.10	<u> </u>
		- out -		4.5	3.15	3.15	3.15	
				6.0	4.20	4.20	4.20	
VIL	Maximum Low-Level Input Voltage	$V_{out} = 0.1 V \text{ or } V_{CC} - 0.1 V$	V	2.0	0.50	0.50	0.50	V
-		$ I_{out} \le 20 \mu A$		3.0	0.90	0.90	0.90	
				4.5	1.35	1.35	1.35	
				6.0	1.80	1.80	1.80	<u> </u>
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$		2.0	1.9	1.9	1.9	V
\sim		$ I_{out} \le 20\mu A$		4.5	4.4	4.4	4.4	
		V V. or V.	< 2 Am	A 2.0	2.49	2.24	2.20	<u> </u>
		$v_{in} = v_{IH} \text{ or } v_{IL}$ L _{out}	<4.0m	A 45	3.98	3.84	3.70	
		Lout	≤5.2m	A 6.0	5.48	5.34	5.20	
Vor	Maximum Low-Level Output Voltage	$V_{in} = V_{TH} \text{ or } V_{TT}$		2.0	0.1	0.1	0.1	v
OL		$ I_{out} \le 20\mu A$		4.5	0.1	0.1	0.1	
				6.0	0.1	0.1	0.1	
		V _{in} = V _{IH} or V _{II} I _{out}	≤2.4m	A 3.0	0.26	0.33	0.40	1
		I III III III III III	≤4.0m	A 4.5	0.26	0.33	0.40	
		Iout	≤5.2m	A 6.0	0.26	0.33	0.40	
Iin	Maximum Input Leakage Current	V _{in} = V _{CC} or GND		6.0	±0.1	±1.0	±1.0	μΑ
ICC	Maximum Quiescent Supply	Vin = VCC or GND		6.0	1.0	10	40	μA
-	Current (per Package)	$I_{out} = 0 \mu A$						
АС СНА	RACTERISTICS (C. = 50 pF. Input	$t = t_{-} = 6 \text{ ns}$			Ø	301	15)	
		- P - I - Lab	Vac		Guarantee	d Limit	<u> </u>	<u> </u>
Symbol	Parameter		v v	-55 to 2	5°0 ≤85°	C	≤125°C	Unit
t _{PLH} ,	Maximum Propagation Delay, Input /	A or B to Output Y	2.0	75	95		110	ns
tPHL			3.0	30	40		55	
			4.5	15	19		22	
			6.0	13	16		19	
t _{TLH} ,	Maximum Output Transition Time, A	ny Output	2.0	75	95		110	ns
t _{THL}			3.0	27	32		36	
			4.5	15	19		22	
	Maximum Input Canacitance			10	10		19	nF
Cm	maximum input Capacitance	<u> </u>		10	10			<u> </u>
								_
				Typical @	25°C, V _{CC} :	= 5.0 V, V	$V_{\rm EE} = 0 {\rm V}$	
CPD	Power Dissipation Capacitance (Per I	Buffer)			22			pF

FIGURE 3-65 CMOS logic. Partial data sheet for a 54/74HC00A quad 2-input NAND gate. The 54 prefix indicates military grade and the 74 prefix indicates commercial grade.

The typical dc supply voltage for CMOS logic is either 5 V, 3.3 V, 2.5 V, or 1.8 V, depend- ing on the category. An advantage of CMOS is that the supply voltages can vary over a wider range than for bipolar logic. The 5 V CMOS can tolerate supply variations from 2 V to 6 V and still operate properly although propagation delay time and power dissipation are significantly affected. The 3.3 V CMOS can operate with supply voltages from 2 V to 3.6 V. The typical dc supply voltage for bipolar logic is 5.0 V with a minimum of 4.5 V and a maximum of 5.5 V.

Power Dissipation

The HC family, for example, has a power of 2.75 mW/gate at 0 Hz (quiescent) and 600 mW/gate at 1

Input and Output Logic Levels

VIL is the LOW level input voltage for a logic gate, and VIH is the HIGH level input volt- age. The 5 V CMOS accepts a maximum voltage of 1.5 V as VIL and a minimum voltage of 3.5 V as VIH. Bipolar logic accepts a maximum voltage of 0.8 V as VIL and a minimum voltage of 2 V as VIH.

 $P_{\rm D} = V_{\rm CC} \left(\underbrace{I_{\rm CCH} + I_{\rm CCI}}_{2} \right)$

VOL is the LOW level output voltage and VOH is the HIGH level output voltage. For 5 V CMOS, the maximum VOL is 0.33 V and the minimum VOH is 4.4 V. For bipolar logic, the maximum VOL is 0.4 V and the minimum VOH is 2.4 V. All values depend on operating conditions as specified on the data sheet $V_{OH} = 440$

 $SPP = t_r P_r$

Speed-Power Product (SPP)

This parameter (**speed-power product**) can be used as a measure of the performation taking into account the propagation delay time and the power dissipation.

EXAMPLE 3-24

A certain gate has a propagation delay of 5 ns and $I_{CCH} = 1$ mA and $I_{CCL} = 2.5$ mA with a dc supply voltage of 5 V. Determine the speed-power product.

Solution

$$P_{\rm D} = V_{\rm CC} \left(\frac{I_{\rm CCH} + I_{\rm CCL}}{2} \right) = 5 \,\mathrm{V} \left(\frac{1 \,\mathrm{mA} + 2.5 \,\mathrm{mA}}{2} \right) = 5 \,\mathrm{V}(1.75 \,\mathrm{mA}) = 8.75 \,\mathrm{mW}$$

$$SPP = (5 \text{ ns}) (8.75 \text{ mW}) = 43.75 \text{ pJ}$$

Fan-Out and Loading

Unit loads
$$= \frac{I_{\rm OL}}{I_{\rm IL}} = \frac{8.0 \text{ mA}}{0.4 \text{ mA}} = 20$$

FIGURE 3–68 The LS family NAND gate output fans out to a maximum of 20 LS family gate inputs.

Unused inputs

(a) Pin 13 input and pin 11 output OK

(b) Pin 12 input is open.

