

The polarity or level indicator is a "triangle" () that indicates inversion when it appears on the input or output of a logic element, as shown in Figure 3–1(b). When appear- ing on the input, it means that a LOW level is the active or asserted input state. When appearing on the output, it means that a LOW level is the active or asserted output state.

For an AND gate, all HIGH inputs produce a HIGH output.

TABLE 3-2

Truth table for a 2-input AND gate.

 $1 = HIGH, 0 = LOW$

EXAMPLE 3-4

For the two input waveforms, A and B , in Figure 3–12, show the output waveform with its proper relation to the inputs.

FIGURE 3-15 Boolean expressions for AND gates with two, three, and four inputs.

FIGURE 3-18 Standard logic symbols for the OR gate showing two inputs (ANSI/IEEE Std. 91-1984/Std. 91a-1991).

$$
X = \frac{ABC + D}{D}
$$
\n
$$
\begin{array}{c|c|c|c|c|c}\nA & B & C & D & X \\
\hline\n0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0\n\end{array}
$$

FIGURE 3-20 Example of OR gate operation with a timing diagram showing input and output time relationships.

EXAMPLE 3-9

For the 3-input OR gate in Figure 3–23, determine the output waveform in proper time relation to the inputs.

FIGURE 3-24 Boolean expressions for OR gates with two, three, and four inputs.

The NAND Gate

(a) Distinctive shape, 2-input NAND gate and its NOT/AND equivalent

(b) Rectangular outline, 2-input NAND gate with polarity indicator

X

FIGURE 3-26 Standard NAND gate logic symbols (ANSI/IEEE Std. 91-1984/Std. 91a-1991).

Truth table for a 2-input NAND gate.

EXAMPLE 3-11

Show the output waveform for the 3-input NAND gate in Figure 3–29 with its proper time relationship to the inputs.

The NOR Gate

EXAMPLE 3-16

Show the output waveform for the 3-input NOR gate in Figure 3–37 with the proper time relation to the inputs.

FIGURE 3-49 Concept of a programmable AND array.

FIGURE 3-53 A simple AND array with EPROM technology. Only one gate in the array is shown for simplicity.

Flash Technology

Flash technology is based on a single transistor link and is both nonvolatile and reprogram- mable. Flash elements are a type of EEPROM but are faster and result in higher density devices than the standard EEPROM link. A detailed discussion of the flash memory element can be found in Chapter 11.

SRAM Technology

Remelon.

TABLE 3-14

74 series logic families based on circuit technology.

Propagation Delay Time

EXAMPLE 3-23

Show the propagation delay times of an inverter.

Solution

An input/output pulse of an inverter is shown in Figure 3–67, and the propagation delay times $(t_{PHL}$ and t_{PLH} , are indicated. In this case, the delays are measured between the 50% points of the corresponding edges of the input and output pulses. The values of t_{PHL} and t_{PLH} are not necessarily equal but in many cases they are the same.

Quad²-Input NAND Gate High-Performance Silicon-Gate CMOS

-
-
-
-
- Requirements • Chip Complexity: 32 FETs or 8 Equivalent Gates

* Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.

- $+$ Derating $-$
	- Plastic DIP: -10 mW/°C from 65° to 125° C
Ceramic DIP: -10 mW/°C from 100° to 125° C
SOIC Package: -7 mW/°C from 100° to 125° C
TSSOP Package: -6.1 mW/°C from 65° to 125° C
TSSOP Package: -6.1 mW/°C from 65° to
	-

RECOMMENDED OPERATING CONDITIONS

FIGURE 3-65 CMOS logic. Partial data sheet for a 54/74HC00A quad 2-input NAND gate. The 54 prefix indicates military grade and the 74 prefix indicates commercial grade.

The typical dc supply voltage for CMOS logic is either 5 V, 3.3 V, 2.5 V, or 1.8 V, depend- ing on the category. An advantage of CMOS is that the supply voltages can vary over a wider range than for bipolar logic. The 5 V CMOS can tolerate supply variations from 2 V to 6 V and still operate properly although propagation delay time and power dissipation are significantly affected. The 3.3 V CMOS can operate with supply voltages from 2 V to 3.6 V. The typical dc supply voltage for bipolar logic is 5.0 V with a minimum of 4.5 V and a maximum of 5.5 V.

Power Dissipation

The HC family, for example, has a power of 2.75 mW/gate at 0 Hz (quiescent) and 600 mW/gate at 1

Input and Output Logic Levels

*V*IL is the LOW level input voltage for a logic gate, and *V*IH is the HIGH level input volt- age. The 5 V CMOS accepts a maximum voltage of 1.5 V as *V*IL and a minimum voltage of 3.5 V as *V*IH. Bipolar logic accepts a maximum voltage of 0.8 V as *V*IL and a minimum voltage of 2 V as *V*IH.

 $P_{\rm D} = V_{\rm CC} \left(\frac{I_{\rm CCH} + I_{\rm CCI}}{2} \right)$

*V*OL is the LOW level output voltage and *V*OH is the HIGH level output voltage. For 5 V CMOS, the maximum *V*OL is 0.33 V and the minimum *V*OH is 4.4 V. For bipolar logic, the maximum *V*OL is 0.4 V and the minimum *VOH* is 2.4 V. All values depend on operating conditions as specified on the data sheet.
 $\mathcal{L}(\mathcal{W})$

 $SPP = t$

Speed-Power Product (SPP)

This parameter (**speed-power product**) can be used as a measure of the perfor taking into account the propagation delay time and the power dissipation.

EXAMPLE 3-24

A certain gate has a propagation delay of 5 ns and $I_{CCH} = 1$ mA and $I_{CCL} = 2.5$ mA with a dc supply voltage of 5 V. Determine the speed-power product.

Solution

$$
P_{\rm D} = V_{\rm CC} \left(\frac{I_{\rm CCH} + I_{\rm CCL}}{2} \right) = 5 \text{ V} \left(\frac{1 \text{ mA} + 2.5 \text{ mA}}{2} \right) = 5 \text{ V} (1.75 \text{ mA}) = 8.75 \text{ mW}
$$
\n
$$
SP_{\rm D} = (5 \text{ m}) \cdot (8.75 \text{ mW}) = 42.75 \text{ mW}
$$

$$
SPP = (5 \text{ ns}) (8.75 \text{ mW}) = 43.75 \text{ pJ}
$$

Fan-Out and Loading

$$
\text{Unit loads } = \frac{I_{\text{OL}}}{I_{\text{IL}}} = \frac{8.0 \text{ mA}}{0.4 \text{ mA}} = 20
$$

FIGURE 3-68 The LS family NAND gate output fans out to a maximum of 20 LS family gate inputs.

Unused inputs

FIGURE 3-70 Troubleshooting a NAND gate for an open input.

FIGURE 3-73

