

伐下深堂中，分阶敌小测诫 平时成秋，／期。

$$
\begin{array}{r}
218 \\
1515 \\
\hline
\end{array}
$$

考朝：点名线上点名：随机科国学四答的逐。 \rightarrow 清假：菲条，

精力放在平时。抱家
in detail．x
学訪法：（1）㮦茧文原版。
（2）上倮听獚。
（3）作业独立完成（与小）\rightarrow

十进籼：on 9
（三） 8 生物， 18 制
（1）数制 $\frac{2.10 .8 .16}{\text { 转换 }}$ ，没点教，训穔坷偶）
（2）

折干张能才很强。

（3）

逻转等学。

（4）

$$
\begin{aligned}
& \text { AND OR. NOT, XOR. NAND } \\
& \text { NOR..... } \\
& \text { 三人表决器。 }
\end{aligned}
$$

编石橪。
（c）时应㯰辑：触发器，trigger

（6）时序申路：移位寄存器。
计抜器，
（7）A／D D／A．觕．

Chap1 Introductory Concepts
 Digital and Analog Quantities

After completing this section, you should be able to

- Define analog
- Define digital
- Explain the difference between digital and analog quantities
- State the advantages of digital over analog
- Give examples of how digital and analog quantities are used in electronics

FIGURE 1-2 Sampled-value representation quantization) of the analog quantity in
Figure 1-1. Each value represented by a dot can be digitized by representing it as a digital code that consists of a series of 1 s and 0 s .

Digital representation has certain advantages over analog representation in electronics applications．For one thing，digital data can be processed and transmitted more efficiently and reli－ably than analog data． Also，digital data has a great advantage when storage is necessary．For example，music when converted to digital form can be stored more compactly and reproduced with greater accuracy and clarity than is possible when it is in analog form．Noise（unwanted voltage fluctuations）does not affect digital data nearly as much as it does analog signals．

在电子应用中，数字表示比模拟表示具有某些优势。一方面，数字数据可以比模拟数据更有效，更可靠地处理和传输。此外，当需要存储时，数字数据具有很大的优势。例如，转换为数字形式的音乐比模拟形式的音乐可以更紧凑地存储，并以更高的准确性和清晰度进行再现。噪声（不需要的电压波动）对数字数据的影响几乎不如对模拟信号的影响。

FIGURE 1－3 A basic audio public address system．

FIGURE 1－4 Basic block diagram of a CD player．Only one channel is shown．

Binary Digits，Logic Levels，and Digital Waveforms

After completing this section, you should be able to

- Define binary
- Define bit
- Name the bits in a binary system
- Explain how voltage levels are used to represent bits
- Explain how voltage levels are interpreted by a digital circuit
- Describe the general characteristics of a pulse
- Determine the amplitude, rise time, fall time, and width of a pulse
- Identify and describe the characteristics of a digital waveform
- Determine the amplitude, period, frequency, and duty cycle of a digital waveform
- Explain what a timing diagram is and state its purpose
- Explain serial and parallel data transfer and state the advantage and disadvantage of each
 of voltage for a digital circuit.

(a) Positive-going pulse

(b) Negative-going pulse

(a) Periodic (square wave)

(b) Nonperiodic

FIGURE 1-9 Examples of digital waveforms.

The frequency (f) of a pulse (digital) waveform is the reciprocal of the period. The
relationship between frequency and period is expressed as follows:
$\mathrm{KH} 2: 10^{3} \mathrm{~Hz}^{b} \quad t^{f=\frac{1}{T} \longrightarrow S} \quad \mathrm{MS}=10^{-3} \mathrm{~J}$

An important characteristic of a periodic digital waveform is its duty cycle, which is the ratio of the pulse width $\left(t_{W}\right)$ to the period (T). It can be expressed as a percentage.

$$
\text { Duty cycle }=\left(\frac{t_{W}}{T}\right) 100 \%
$$

Equation 1-3

EXAMPLE 1-1

A portion of a periodic digital waveform is shown in Figure 1-10. The measurements

FIGURE 1-10

网线

(a) Determine the total time required to serially transfer the eight bits contained in waveform A of Figure $1-14$, and indicate the sequence of bits. The leftmost bit is the first to be transferred. The 1 MHz clock is used as reference.
(b) What is the total time to transfer the same eight bits in parallel?

FIGURE 1-14 r

Basic Logic Functions

After completing this section, you should be able to

- List three basic logic functions
- Define the NOT function
- Define the AND function
- Define the OR function

NOT
The NOT function changes one logic level to the opposite logic level, as indicated in Figure $1-17$. When the input is HIGH (1), the output is LOW (0). When the input is LOW, the output is HIGH. In either case, the output is not the same as the input. The NOT fundtion is implemented by a logic circuit known as ar inverter.

FIGURE 1-17 The NOT function.

The AND function produces a HIGH output only when all the inputs are HIGH, as indicate in Figure $1-18$ for the case of two inputs. When one input is HIGH and the other
 input is HIGH, the output is HIGH. When any or all inputs are LOW, the output is LOW. The AND function is implemented by a logic circuit known as an AND gate.

Inputs	Output	
0	0	0
0	1	0
1	0	0
1	1	1
π	π	

OR

The OR function produces a HIGH output when one or more inputs are HIGH, as indicated in Figure $1-19$ for the case of two inputs. When one input is HIGH or the other input is HIGH or both inputs are HIGH, the output is HIGH. When both inputs are LOW, the output is LOW. The OR function is implemented by a logic circuit known as an $O R$ gate.

FIGURE 1-19 The OR function.

Combinational and Sequential Logic Functions

After completing this section, you should be able to

- List several types of logic functions
- Describe comparison and list the four arithmetic functions
- Describe code conversion, encoding, and decoding
- Describe multiplexing and demultiplexing
- Describe the counting function
- Describe the storage function
- Explain the operation of the tablet-bottling system

(a) Basic magnitude comparator

(b) Example: A is less than $B(2<5)$ as indicated by the HIGH output $(A<B)$

(a) Basic adder

(b) Example: A plus $B(3+9=12)$

FIGURE 1-21 The addition function.

FIGURE 1-22 An encoder used to encode a calculator keystroke into a binary code for storage or for calculation.

FIGURE 1-23 A decoder used to convert a special binary code into a 7-segment

FIGURE 1-24 Illustration of a basic multiplexing/demultiplexing application.

Serial bits

FIGURE 1-25 Example of the pporetion of a 4-bitseria shift register. Each block represents one storage "cell" or flip-flop.

FIGURE 1-26 Example of the operation of a 4-bi parallel shift register.

FIGURE 1-27 Illustration of basic counter operation.

FIGURE 1-28 Block diagram of a tablet-bottling system.

Introduction to Programmable Logic

FIGURE 1-32 General block diagram of aCPLD.

FIGURE 1-36 Basic setup for programming a PLD_or FPGA. Graphic entry of a logic circuit is shown for illustration. Text entry such as Y HD. can also be used. (Photo courtesy of Digilent, Inc.)

FIGURE 1-37 Basic programmable logic design flow block diagram.

Fixed-Function Logic Devices

FIGURE 1-38 Cutaway view of one type of fixed-function IC package (dual in-line package) showing the chip mounted inside, with connections to input and output pins.

(a) Dual in-line package (DiP)

(b) Small-outline IC SOIC

(a) SSOP (153×193 mils $)$

(d) LQFP ($7 \times 7 \mathrm{~mm}$)

(b) PLCC ($350 \times 350 \mathrm{mils}$)
(e) Laminate CSP bottom view

(c) LCC (350×350 mils $)$
(f) FBGA bottom view
 $(4 \times 4 \mathrm{~mm})$

FIGURE 1-40 Examples of SMT package configurations. Parts (e) and (f) show bottom views.

FIGURE 1-41 Pin numbering for two examples of standard types of IC packages. Top views are shown.

Test and Measurement Instruments

EXAMPLE 1-3

Based on the readouts, determine the amplitude and the period of the pulse waveform on the screen of a digital oscilloscope as shown in Figure 1-48. Also, calculate the frequency.

FIGURE 1-48

Sampling Rate

The sampling rate is the rate at which the analog-to-digital converter (ADC) in the oscilloscope is clocked to digitize the incoming signal. The sampling rate and bandwidth are not directly related, but the sampling rate should be at least five times the bandwidth. Figure 1-49 illustrates the difference between a low sampling rate and a much higher sampling rate. Part (a) shows how a sampling rate that is too low distorts the shape of the rising edge. In part (b), the higher sampling rate results in a much more accurate representation of the rising edge. When the sampling rate is sufficiently high, the signal can be precisely reproduced.

FIGURE 1-53 A typical multichannel logic analyzer probe. Used with permission from Tektronix, Inc.

FIGURE 1-55 Typical DMMs. Used with permission from (a) B+K Precision ${ }^{\circledR \text {; }}$ (b) Fluke

FIGURE 1-56 Typical bench-type dc power supply. Used with permission from Tektronix, Inc.

Chap2 Number Systems, Operations, and Codes

2-1 Decimal Numbers

The digit 2 has a weight of 10 in this position.

23
digits: The decimal number system has ten digits.
weight:The decimal number system has a base of 10 .

2-2 Binary Numbers

十进制：

二进制：数： 0,1

$$
\begin{aligned}
& (101.11)_{2} \\
= & 1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2} \\
= & 4+0+1+0.5+0.25 \\
= & (5.5) .
\end{aligned}
$$

十进制 \rightarrow 二进制：
（除2取余）

$$
\begin{aligned}
& \left(\begin{array}{lll}
3 & 2 & 0 \\
1 & 1 & 0
\end{array}\right)_{2} \Rightarrow 1 \times 2^{3}+1 \times 2^{2}+0+1 \times 2^{0} \\
& =8+4+0+1 \\
& =13 \\
& (0.11)_{2} \Rightarrow 1 \times 2^{-1}+1 \times 2^{-2}=0.540 .15 \\
& =0.75 \text {. }
\end{aligned}
$$

八进制：（ $0 \sim 7$ ）

$$
\begin{aligned}
& 310.5 \\
= & 3 \times 8^{2}+1 \times 8^{1}+0 \times 8^{0}+5 \times 8^{-1} \\
= & 3 \times 64+8+0+\frac{5}{8}
\end{aligned}
$$

16进制：（o～～，A～F）

$$
\begin{aligned}
& A E_{,} 34 \\
= & 10 \times 16^{1}+14 \times 16^{\circ}+3 \times 10^{-1}+4 \times 16^{2} \\
= & 16 \times 10+14+\frac{3}{16}+\frac{4}{1 b^{2}}
\end{aligned}
$$

任意进制 \rightarrow 十进制转化方法。

TABLE 2-2
Binary weights.

2^{8}	2^{7}	Positive Powers of Two (Whole Numbers)					2^{1}	2^{0}	2^{-1}	Negative Powers of Two (Fractional Number)				2^{-6}
		$2{ }^{6}$	25	2^{4}	2^{3}	2^{2}				2^{-2}	2^{-3}	2^{-4}	2^{-5}	
256	128	64	32	16	8	4	2	1	1/2	1/4	1/8	1/16	1/32	1/64
									0.5	0.25	0.125	0.625	0.03125	0.015625

Binary-to-Decimal Conversion

The decimal value of any binary number can be found by adding the weights of all bits that are 1 and discarding the weights of all bits that are 0 .

EXAMPLE 2-3

Convert the binary whole number 1101101 to decimal.

Solution

Determine the weight of each bit that is a 1 , and then find the sum of the weights to get the decimal number.

$$
\begin{aligned}
& \text { Weight: } 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} \\
& \text { Binary number: } \begin{array}{lllllll}
1 & 1 & 1 & 1
\end{array} \\
& 1101101=2^{6}+2^{5}+2^{3}+2^{2}+2^{0} \\
& =64+32+8+4+1=\mathbf{1 0 9}
\end{aligned}
$$

Related Problem

Convert the binary number 10010001 to decimal.

2-3 Decimal-to-Binary Conversion

Repeated Division-by-2 Method

Remainder

Stop when the
whole-number quotient is 0 .

For example:

Repeated Multiplication by 2

Test:

$$
\partial_{2}
$$

$$
)_{8}
$$

$$
J_{16}
$$

2-4 Binary Arithmetic
Add binary numbers

Convert a binary number to its 2 's complement using either of two methods

EXAMPLE 2-12

Find the 2's complement of 10110010.

Solution

10110010	Binary number
01001101	1's complement
$+\quad 1$	Add 1
$\mathbf{0 1 0 0 1 1 1 0}$	2's complement

Related Problem

Determine the 2's complement of 11001011 .

2-6 Signed Numbers
 The sign Bit

$$
100 \mathrm{M} / 8=12.5 \mathrm{MB}
$$

The left-most bit in a signed binary number is the sign bit, which tells you whether the number is positive or negative.
A 0 sign bit indicates a positive number, and a 1 sign bit indicates a negative number.

In the 1's complement form, a negative number is the 1 's complement of the corresponding positive number.

In the 2's complement form, a negative number is the 2's complement of the corresponding positive number.

For example:

$8 \alpha \leqslant 42:$

RN $2 \rightarrow 2=00000000$
 1111111111
$2^{8}-1$

Range of Signed Integer Numbers－0．

-128

Floating－Point Numbers

A floating－point number（also known as a real number）consists of two parts plus a sign．The mantissa is the part of a floating－point number that represents the magnitude of the number and is between 0 and 1 ． The exponent is the part of a floating－point number that represents the number of places that the decimal point（or binary point）is to be moved．

浮点数（也称为实数）由两部分加上一个符号组成。尾数是浮点数的一部分，代表数字的大小，介于 0 和 1 之间。指数是浮点数的一部分，代表小数点（或二进制小数点）的位数。）将被移动。

Single－Precision Floating－Point Binary Numbers

There are two exceptions to the format for floating－point numbers：The number 0.0 is repre－seated by all 0 s ，and infinity is represented by all 1 s in the exponent and all 0 s in the mantissa．

浮点数的格式有两个例外：数字 0.0 由全 0 表示，无穷大由指数中的全 1 和尾数中的全 0 表示。

$$
\begin{aligned}
& \text { (10011110) 原. } \\
& 11100010
\end{aligned}
$$

$$
\begin{aligned}
& \text { (fiti) } \begin{array}{l}
0 \rightarrow 00000000 \\
\nrightarrow \pm 0
\end{array} \\
& \pm 0 \quad 00000000 \\
& \angle \frac{-0.10000000}{\downarrow \text { 反 }} \\
& \xrightarrow{\text { 处 }+11111111}
\end{aligned}
$$

EXAMPLE 2-18

Convert the decimal number 3.248×10^{4} to a single-precision floating-point binary number.

Solution

Convert the decimal number to binary.

$$
3.248 \times 10^{4}=32480=111111011100000_{2}=11111011100000
$$

The MSB will not occupy a bit position because it if always a 1 . Therefore, the mantissa is the fractional 23-bit binary number 11111011100000000000000 and the biased exponent is

Determine the binary value of the following floating-point binary number:

2-7 Arithmetic Operations with Signed Numbers

Addition

The two numbers in an addition are the addend and the augend. The result is the sum. There are four cases that can occur when two signed binary numbers are added.

1. Both numbers positive
2. Positive number with magnitude larger than negative number
3. Negative number with magnitude larger than positive number
4. Both numbers negative

Let's take one case at a time using 8-bit signed numbers as examples. The equivalent decimal numbers are shown for reference.
Both numbers positive:

$$
\begin{array}{r}
00000111 \\
+00000100 \\
\hline 00001011
\end{array}
$$

The sum is positive and is therefore in true (uncomplemented) binary.
Positive number with magnitude larger than negative number:

$$
\text { Discard carry } \longrightarrow \begin{array}{r}
00001111 \\
+11111010 \\
\hline 00001001
\end{array}
$$

The final carry bit is discarded. The sum is positive and therefore in true (uncomplemented) binary.
Negative number with magnitude larger than positive number:

$$
\begin{aligned}
& 00010000 \\
&+11101000 \longleftrightarrow+-24 \\
& \hline 11111000 \longleftrightarrow-8
\end{aligned}
$$

The sum is negative and therefore in 2's complement form.
Both numbers negative:

The final carry bit is discarded. The sum is negative and therefore in 2 Seomplement form.

When two numbers are added and the number of bits required to represent the sum exceeds the number of bits in the two numbers, an overflow-esults as indicated by an incorrect sign bit.

An overflow can occur only when both numbers are positive or both numbers are nega-tive. If the sign bit of the result is different than the sign bit of the numbers that are added, overflow is indicated.

Subtraction

To subtract two signed numbers, take the 2's complement of the subtrahend and add Discard any final carry bit.

EXAMPLE 2-20
Perform each of the following subtractions of the signed numbers:
(a) $00001000-00000011$
(b) $00001100-11110111$
(c) $11100111-00010011$
(d) $10001000-11100010$

Multiplication

The numbers in a multiplication are the multiplicand, the multiplier, and the product.
The sign of the product of a multiplication depends on the signs of the multiplicand and the multiplier according to the following two rules:

- If the signs are the same, the product is positive.
- If the signs are different, the product is negative.

EXAMPLE 2-22

Multiply the signed binary numbers: 01010011 (multiplicand) and 11000101 (multiplier).

Division

The numbers in a division are the dividend, the divisor, and the quotient. These are illus- trated in the following standard division format.

$$
\frac{\text { dividend }}{\text { divisor }}=\text { quotient }
$$

Divide 01100100 by 00011001 .

2-8 Hexadecimal Numbers

The hexadecimal number system has a base of sixteen; that is, it is composed of 16 numeric and alphabetic characters.

（8位）䢦

$$
\left.(-37)_{10}+445\right)_{10} \Rightarrow
$$

同符号的，会发生溢出。

+6 ，从低位升始。
高位

TABLE 2-8		
Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Binary-to-Hexadecimal Conversion

EXAMPLE 2-24

Convert the following binary numbers to hexadecimal:
(a) 1100101001010111
(b) 111111000101101001

Hexadecimal-to-Binary Conversion

EXAMPLE 2-25

Determine the binary numbers for the following hexadecimal numbers:
(a) $10 \mathrm{~A} 4_{16}$
(b) $\quad \mathrm{CF} 8 \mathrm{E}_{16}$
(c) 9742_{16}

Hexadecimal-to-Decimal Conversion

EXAMPLE 2-26

Convert the following hexadecimal numbers to decimal:
(a) $1 \mathrm{C}_{16}$
(b) $\mathrm{A} 85_{16}$

Decimal-to-Hexadecimal Conversion

EXAMPLE 2-28

Convert the decimal number 650 to hexadecimal by repeated division by 16 .

Hexadecimal Addition

EXAMPLE 2-29

Add the following hexadecimal numbers:
(a) $23_{16}+16_{16}$
(b) $58_{16}+22_{16}$
(c) $2 \mathrm{~B}_{16}+84_{16}$
(d) $\mathrm{DF}_{16}+\mathrm{AC}_{16}$

2-9 Octal Numbers

After completing this section, you should be able to u Write the digits of the octal number system

- Convert from octal to decimal
- Convert from decimal to octal
- Convert from octal to binary
- Convert from binary to octal

2-10 Binary Coded Decimal (BCD)

Binary coded decimal (BCD) is a way to express each of the decimal digits with a binary code.

TABLE 2-5

Decimal/BCD conversion.
Decimal Digit
BCD
:---
BCD

EXAMPLE 2-35

Add the following BCD numbers:
(a) $0011+0100$
(b) $00100011+00010101$
(c) $10000110+00010011$
(d) $010001010000+010000010111$

$\begin{array}{r}(32)_{10}\end{array}>C$

$$
\begin{aligned}
& (34) 1 .+(4)) 10 \\
& \Rightarrow(00110100)_{B C 1}+(01000111)_{B C D} \\
& 00110100 \quad 34 \\
& \text { 计 }>9 \text { 9) (} 7 \text { (} 7 \\
& \frac{+000001.1,0}{111111.0} 1(10000001)_{B C D} . \\
& 81 .
\end{aligned}
$$

2-11 Digital Codes

The Gray Code

The Gray code is unweighted and is not an arithmetic code; that is, there are no specific weights assigned to the bit positions.

TABLE 2-6					
Four-bit Gray code.					
Decimal	Binary	Gray Code	Decimal	Binary	Gray Cod
0	0000	0000 T	8	1000	1100
1	0001	$0001 \Downarrow$	9	$\widetilde{1001}$	110%
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	$1{ }^{14}$	1110	1001
7	0111	0100	-15	1111	1000

FIGURE 2-7 A simplified illustration of how the Gray code solves the error problem in shaft position encoders. Three bits are shown to illustrate the concept, although most shaft encoders use more than 10 bits to achieve a higher resolution.

ASCII is the abbreviation for American Standard Code for Information Interchange. Fro- nounced "askee," ASCII is a universally accepted alphanumeric code used in most comput-ers amdither electronic equipment.

Unicode

Unicode provides the ability to encode all of the characters used for the written languages of the world by assigning each character a unique numeric value and name utilizing the universal character set (UCS). It is applicable in computer applications dealing with multi- lingual text, mathematical symbols, or other technical characters.符进行编码的能力。它适用于处理多语言文本，数学符号或其他技术字符的计算机应用程序。

2－12 Error Codes
Parity Method for Error Detection
TABLE 2－8
The BCD code with parity bits．

Chap1．2．作业上网黄看。

